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PARAXIAL RAYTRACING

Reverse Raytracing

To trace rays in reverse, a simple
manipulation of the last equations
gives the procedure:
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N
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Paraxial raytracing through multi−
lens systems consisting of thin
lenses

The paraxial raytrace equations are an
invaluable aid in determining many
useful pieces of information about an
optical system, including the
following

1) Approximate ray heights at each
lens.  These are required to determine
the clear diameters for each lens to
avoid unacceptable light loss.

2) The focal lengths and positions of
the principal planes of systems
consisting of two or more elements.

3) The object and image positions,
and the magnification of multi−
element systems.

For further applications of paraxial
raytracing, and for a more thorough
introduction to the techniques, you
may wish to consult one of the
following books, which also discuss
the tracing of rays outside the
paraxial region

“ Modern Optical Engineering” by
W.J. Smith
“ Elements of Optical System Design”
by D.O’Shea

The parameters required are shown
in the figure below.  Here we use the
following sign convention

Slope angles u are defined to be +ve
if the ray slopes upwards to the right.
Ray heights h are defined to be +ve
if the ray is above the axis.

The parameters required are the
separations d

j
between jth and

(j+1)th component and the powers K
j

of the components.

[For thick lenses the values d
j
are

separations between the second
principal plane of the jth component
and the first principal plane of the
(j+1)th component.]

Successive application of the
following equations, traces the path
of the paraxial ray through the
optical system.

for j=1...N where N is the number of
lenses.
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Ray 1 A ray with u
1

= 0 and h
1

= 1.
Tracing this ray allows the calculation
of the focal length f and back focal 
distance f

b
, from

f=−
1

and f
b
=−

h
N

u
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u
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Ray 2 A ray with u
N+1

=0 and h
N
=1.

Tracing this ray in reverse allows a
check of the focal length f to be
made and also gives the front focal
distance f

f
, from

f=
1     and

ff
ff
==

h
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u
1

u
1

When using paraxial raytracing to
examine an optical system, the 4
types of ray outlined here can often
provide particularly useful
information.
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Use of the paraxial raytrace to
determine clear radii.

To determine the required clear radii
of components, the rays passing
through the upper and lower edges
of the aperture stop should be traced.
In the absence of vignetting, the
heights of these rays at surface j are
given by (h

j
+h

j
) and (h

j
−h

j
)

respectively.  The required clear radius
is the larger of these two in
magnitude, that is lh

j
l+lh

j
l.
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Ray 3 A ray traced for infinite
object distance from the object
position with u

1
set to some arbitrary

value and h
1

= −su
1
, where s is the

object distance introduced earlier on
Theory Pg 1.  This ray allows the
location of the image to be found,
relative to the last lens, from

s'=−   
h

N

u
N+1

To obtain useful information about
the ray heights and angles of the
paraxial marginal ray, take either Ray
1 or Ray 3 for the case of an infinitely
distant object or a finite object

numerical aperture.
The magnification of the jth
component is given by 

Ray 4 This ray should pass through
the center of the aperture stop (the
quantities have a 'bar' placed over
them by convention) so that h=0 at
that surface.  Either a forwards or
backwards trace maybe carried out
with an arbitrary value of u at the
stop.

For an infinite object distance scale all
the u and h values to make the initial
field angle u correct.

For a finite object distance, determine
the current object height of the
arbitrary ray from h

1
+su

1
and then

scale all h and u values until the
object height is the desired value.
Alternatively, one can work with the
image height h

N
+s'u

N+1
, if that

quantity has a target value.

A particularly useful feature of the
linear nature of the paraxial
equations is the ability to combine
the paths of any two known paraxial
rays to determine the path of another
paraxial ray.  Two uses are given here.

Use of the Paraxial raytrace to
determine the range of angles
present in radiation.

The range of angles in any space can
be found by forming the sum lu

j
l+lu

j
l.

This can be useful in determining the
optimum location to place
components which have a strong
angle sensitive behavior, such as
Interference Filters and Polarizers.

Lagrange Invariant H

If we form the product

H = nuη

where n is the refractive index and u
the paraxial marginal angle in object
space and η is the object height, then
we find that this is equal to the
corresponding product n’u’η’ formed
from the parameters in image space.

The value H is known as the Lagrange
invariant and has important
consequences in many areas of
optics.

When the object is at infinity, this
form of the equation above becomes
indeterminate in object space and is
replaced by the alternative form

H = nhθ

where h is the paraxial marginal ray
height and θ is the paraxial chief ray
angle in radians.

Additionally, H may be found in any
space of an optical system given the
refractive index n, and the paraxial
marginal and chief ray parameters u,
h, u and h from

H = n(uh−uh)

One implication of the Lagrange
invariant is in illumination calculations
especially the concentration of light
onto fibers.

For example, given a collection cone
angle and image patch size, the value
of H is defined and no single channel
optical system can improve collection
efficiencies beyond a certain level.
Increasing the solid angle of the
radiation from the source
automatically reduces the area of the
source seen by the same amount.  Of
course, if the source is highly
directional in output there may be
changes in the total energy flux, but
there will be a point of diminishing
returns.

distance respectively.  Then scale all h
j

and u
j
values so that the value of h at

the stop is equal to the stop radius,
or luN+1l is equal to the output

Ealing Catalog



At the lens, using h
1
= h

0
+d

1
u

1

h
1
=0.6

h
1
=(3.357x10-4)25
=8.393x10−3mm

and following refraction, using
u

2
=u

1
-h

1
K

1

u
2
=−0.012rads.

u
2
=1.678x10−4rads.

Using the appropriate equations in
the previous column, we find the
output waist is located
49.98mm from the second principal
plane of the lens with a beam waist
radius of 16.78µm

For this particular case, beam waist
location is not greatly shifted from
the paraxial back focus.  However this
is not always the case with Gaussian
beams, especially where the initial
divergence is large.
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Example 6

To compute the position and radius
of the beam waist produced by a
50mm focal length lens, when used
with a Helium−Neon laser with a
beam waist diameter of 1.2mm
located 25mm in front of the first
principal plane of the lens.

In this case 

Ray 1 − h
0
=0.6mm,

u
1
=0

Ray 2 − h
0
=0mm

u
1
= 0.6328x10−3

π 0.6

=3.357x10−4rads.
(the farfield semi−
divergence angle)

Example 5

The system used in Example 3 (Theory
Pg 4) can also be treated using the
paraxial raytracing equations.

If we set an initial beam diameter of
15mm, this is a paraxial ray height h

1

of 7.5mm; also for an object at
infinity u

1
=0.

Following the procedure of the
paraxial raytrace we obtain

u
2
= u

1
− h

1
K

1

= 0 − (7.5)(1/75)
= − 0.1

h
2
= h

1
+d

2
u

2

=7.5+37.5(− 0.1)
=3.75

u
3
=u

2
−h

2
K

2

=−0.1−3.75(1/75)
=−0.15

The focal length is given by 

f=−h
1
/u

3

=−7.5/(−0.15)=50 mm

and the back focus by 

f
b
=−h

2
/u

2

=−3.75/(−0.15)=25 mm.

Once again the necessary
adjustments must be made if the
lenses are of finite thickness, by
referring all distances to the
appropriate principal points.

If we place the stop at the first lens
with a field angle of 0.1 radians, then
the values for the paraxial chief ray
are as follows

u
1

= 0.1
h

1
= 0 

u
2

= 0.1 
h

2
= 3.75 

u
3

= 0.05

The image height η is given by 

h
2
+f

b
u

3
= 5mm

which is also equal to fθ.

−(h
j
u

j+1
+h

j
u

j+1
)

u2
j+1

+ u2
j+1

Paraxial Raytracing and Gaussian
Beams

Another useful application is in
determining the beam waist position
and radius of a Gaussian beam.  To
do this, trace the following two rays
from the input beam waist location,
at distance d

1
in front of the input

lens.

Ray 1 − h
0
=ω

0
(the 1/e2 radius of 

the beam at the input 
waist),
u

1
=0

Ray 2 − h
0
=0,

u
1
=λ/πω

0
(where λ is the 

wavelength).  This is the 
far field semi−divergence
angle.

ω
j
= λ

π(u2
j+1

+u2
j+1

)

The radius of that waist is given by

and the far field semi angle of
divergence by

θ
j
= (u2

j+1
+u2

j+1
)

At any position, the beam diameter is
given by 

(h2+h2)

The distance of output beam waist
relative to the appropriate principal
plane of lens j can be found from 
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